Приоритетность на эффективность работы смо разных типов. Структура и параметры эффективности и качества функционирования смо

Показатели эффективности СМО
  • абсолютная и относительная пропускная способность системы;
  • коэффициенты загрузки и простоя;
  • среднее время полной загрузки системы;
  • среднее время пребывания заявки в системе.
Показатели, характеризующие систему с точки зрения потребителей :
  • P обс – вероятность обслуживания заявки,
  • t сист – время пребывания заявки в системе.
Показатели, характеризующие систему с точки зрения её эксплуатационных свойств :
  • λ b – абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени),
  • P обс – относительная пропускная способность системы,
  • k з – коэффициент загрузки системы.
см. также Параметры экономической эффективности СМО

Задача . В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.
Решение. По условию n=3, λ=0,25(1/ч), t об. =3 (ч). Интенсивность потока обслуживаний μ=1/t об. =1/3=0,33. Интенсивность нагрузки ЭВМ по формуле (24) ρ=0,25/0,33=0,75. Найдем предельные вероятности состояний:
по формуле (25) p 0 =(1+0,75+0,75 2 /2!+0,75 3 /3!) -1 =0,476;
по формуле (26) p 1 =0,75∙0,476=0,357; p 2 =(0,75 2 /2!)∙0,476=0,134; p 3 =(0,75 3 /3!)∙0,476=0,033 т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% - имеется одна заявка (занята одна ЭВМ), 13,4% - две заявки (две ЭВМ), 3,3% времени - три заявки (заняты три ЭВМ).
Вероятность отказа (когда заняты все три ЭВМ), таким образом, P отк. =p 3 =0,033.
По формуле (28) относительная пропускная способность центра Q = 1-0,033 = 0,967, т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.
По формуле (29) абсолютная пропускная способность центра A= 0,25∙0,967 = 0,242, т.е. в один час в среднем обслуживается 0,242 заявки.
По формуле (30) среднее число занятых ЭВМ k =0,242/0,33 = 0,725, т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на 72,5/3 =24,2%.
При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, у нас высокая пропускная способность СМО, а с другой стороны - значительный простой каналов обслуживания) и выбрать компромиссное решение.

Задача . В порту имеется один причал для разгрузки судов. Интенсивность потока судов равна 0,4 (судов в сутки). Среднее время разгрузки одного судна составляет 2 суток. Предполагается, что очередь может быть неограниченной длины. Найти показатели эффективности работы причала, а также вероятность того, что ожидают разгрузки не более чем 2 судна.
Решение. Имеем ρ = λ/μ = μt об. =0,4∙2=0,8. Так как ρ = 0,8 < 1, то очередь на разгрузку не может бесконечно возрастать и предельные вероятности существуют. Найдем их.
Вероятность того, что причал свободен, по (33) p 0 = 1 - 0,8 = 0,2, а вероятность того, что он занят, P зан. = 1-0,2 = 0,8. По формуле (34) вероятности того, что у причала находятся 1, 2, 3 судна (т.е. ожидают разгрузки 0, 1, 2 судна), равны p 1 = 0,8(1-0,8) = 0,16; p 2 = 0,8 2 ∙(1-0,8) = 0,128; p 3 = 0,8 3 ∙(1-0,8) = 0,1024.
Вероятность того, что ожидают разгрузку не более чем 2 судна, равна
P=p 1 +p 2 +p 3 = 0,16 + 0,128 + 0,1024 = 0,3904
По формуле (40) среднее число судов, ожидающих разгрузки
L jч =0,8 2 /(1-0,8) = 3,2
а среднее время ожидания разгрузки по формуле (15.42)
T оч =3,2/0,8 = 4 сутки.
По формуле (36) среднее число судов, находящихся у причала, L сист. = 0,8/(1-0,8) = 4 (сутки) (или проще по (37) L сист. = 3,2+0,8 = 4 (сутки), а среднее время пребывания судна у причала по формуле (41) T сист = 4/0,8 = 5 (сутки).
Очевидно, что эффективность разгрузки судов невысокая. Для ее повышения необходимо уменьшение среднего времени разгрузки судна t об либо увеличение числа причалов n .

Задача . В универсаме к узлу расчета поступает поток покупателей с интенсивностью λ = 81 чел. в час. Средняя продолжительность обслуживания контролером-кассиром одного покупателя t об = 2 мин. Определить:
а. Минимальное количество контролеров-кассиров п min , при котором очередь не будет расти до бесконечности, и соответствующие характеристики обслуживания при n=n min .
б. Оптимальное количество n опт. контролеров-кассиров, при котором относительная величина затрат С отн., связанная с издержками на содержание каналов обслуживания и с пребыванием в очереди покупателей, задаваемая, например, как , будет минимальна, и сравнить характеристики обслуживания при n=n min и n=n опт.
в. Вероятность того, что в очереди будет не более трех покупателей.
Решение.
а. По условию l = 81(1/ч) = 81/60 = 1,35 (1/мин.). По формуле (24) r = l/ m = lt об = 1,35×2 = 2,7. Очередь не будет возрастать до бесконечности при условии r/n < 1, т.е. при n > r = 2,7. Таким образом, минимальное количество контролеров-кассиров n min = 3.
Найдем характеристики обслуживания СМО при п = 3.
Вероятность того, что в узле расчета отсутствуют покупатели, по формуле (45) p 0 = (1+2,7+2,7 2 /2!+2,7 3 /3!+2,7 4 /3!(3-2,7)) -1 = 0,025, т.е. в среднем 2,5% времени контролеры-кассиры будут простаивать.
Вероятность того, что в узле расчета будет очередь, по (48) P оч. = (2,7 4 /3!(3-2,7))0,025 = 0,735
Среднее число покупателей, находящихся в очереди, по (50) L оч. = (2,7 4 /3∙3!(1-2,7/3) 2)0,025 = 7,35.
Среднее время ожидания в очереди по (42) T оч. = 7,35/1,35 = 5,44 (мин).
Среднее число покупателей в узле расчета по (51) L сист. = 7,35+2,7 = 10,05.
Среднее время нахождения покупателей в узле расчета по (41) T сист. = 10,05/1,35 = 7,44 (мин).
Таблица 1

Характеристика обслуживания Число контролеров-кассиров
3 4 5 6 7
Вероятность простоя контролеров-кассиров p 0 0,025 0,057 0,065 0,067 0,067
Среднее число покупателей в очереди T оч. 5,44 0,60 0,15 0,03 0,01
Относительная величина затрат С отн. 18,54 4,77 4,14 4,53 5,22
Среднее число контролеров-кассиров, занятых обслуживанием покупателей, по (49) k = 2,7.
Коэффициент (доля) занятых обслуживанием контролеров-кассиров
= ρ/n = 2,7/3 = 0,9.
Абсолютная пропускная способность узла расчета А = 1,35 (1/мин), или 81 (1/ч), т.е. 81 покупатель в час.
Анализ характеристик обслуживания свидетельствует о значительной перегрузке узла расчета при наличии трех контролеров-кассиров.
б. Относительная величина затрат при n = 3
C отн. = = 3/1,35+3∙5,44 = 18,54.
Рассчитаем относительную величину затрат при других значениях п (табл. 1).
Как видно из табл. 2, минимальные затраты получены при n = n опт. = 5 контролерах-кассирах.
Определим характеристики обслуживания узла расчета при n = n опт. =5. Получим P оч. = 0,091; L оч. = 0,198; Т оч. = 0,146 (мин); L сист. = 2,90; T снст. = 2,15 (мин); k = 2,7; k 3 = 0,54.
Как видим, при n = 5 по сравнению с n = 3 существенно уменьшились вероятность возникновения очереди P оч. , длина очереди L оч. и среднее время пребывания в очереди T оч. и соответственно среднее число покупателей L сист. и среднее время нахождения в узле расчета T сист., а также доля занятых обслуживанием контролеров k 3. Но среднее число занятых обслуживанием контролеров-кассиров k и абсолютная пропускная способность узла расчета А естественно не изменились.
в. Вероятность того, что в очереди будет не более 3 покупателей, определится как
= 1- P оч. + p 5+1 + p 5+2 + p 5+3 , где каждое слагаемое найдем по формулам (45) – (48). Получим при n=5:

Заметим, что в случае n=3 контролеров-кассиров та же вероятность существенно меньше: P(r ≤ 3) =0,464.

Система массового обслуживания состоит из следующих элементов (рисунок 5.6).

1 - входящий поток требований ω(t ) – совокупность требований к СМО на проведение определенных работ (заправка, мойка, ТО и др.) или оказание услуг (покупка изделий, деталей, материалов и др.). Входящий поток требований может быть постоянным и переменным.

Требования бывают однородные (одинаковые виды работ или услуг) и неоднородные (разные виды работ или услуг).

2 - очередь – требования, ожидающие обслуживания. Очередь оценивается средней длиной r – числом объектов или клиентов, ожидающих обслуживания.

Рисунок 5.6 – Общая схема системы массового обслуживания

3 - обслуживающие аппараты (каналы обслуживания) – совокупность рабочих мест, исполнителей, оборудования, осуществляющих обслуживание требований по определенной технологии.

4 - выходящий поток требований ω’(t ) поток требований, прошедших СМО. В общем случае выходящий поток может состоять из требований обслуженных и необслуженных. Пример необслуженных требований: отсутствие нужной детали для автомобиля, находящегося в ремонте.

5- замыкание (возможное) СМО – состояние системы, при котором входящий поток требований зависит от выходящего.

На автомобильном транспорте после обслуживания требований (ТО, ремонт) автомобиль должен быть технически исправным.

Системы массового обслуживания классифицируются следующим образом.

1 По ограничениям на длину очереди:

СМО с потерями – требование покидает СМО необслуженным, если в момент его поступления все каналы заняты;

СМО без потерь – требование занимает очередь, даже если все каналы
заняты;

СМО с ограничениями по длине очереди m или времени ожидания: если существует ограничение на очередь, то вновь поступившее (m +1)-е требование выбывает из системы необслуженным (например, ограниченная емкость накопительной площадки перед АЗС).

2 По количеству каналов обслуживания п:

Одноканальные: n =1;

Многоканальные n ≥2.

3 По типу обслуживающих каналов:

Однотипные (универсальные);

Разнотипные (специализированные).

4 По порядку обслуживания:

Однофазовые – обслуживание производится на одном аппарате (посту);

Многофазовые – требования последовательно проходит несколько аппаратов обслуживания (например, поточные линии ТО; конвейерная сборка автомобиля; линия внешнего ухода: уборка → мойка → обсушка → полировка).

5 По приоритетности обслуживания:

Без приоритета – требования обслуживаются в порядке их поступления на СМО;

С приоритетом – требования обслуживаются в зависимости от присвоенного им при поступлении ранга приоритетности (например, заправка автомобилей скорой помощи на АЗС; первоочередной ремонт на АТП автомобилей, приносящих наибольшую прибыль на перевозках).

6 По величине входящего потока требований:

С неограниченным входящим потоком;

С ограниченным входящим потоком (например, в случае предварительной записи на определенные виды работ и услуг).

7 По структуре СМО:

Замкнутые – входящий поток требований при прочих равных условиях зависит от числа ранее обслуженных требований (комплексное АТП, обслуживающее только свои автомобили (5 на рисунке 5.6));

Открытые – входящий поток требований не зависит от числа ранее обслуженных: АЗС общего пользования, магазин по продаже запасных частей.

8 По взаимосвязи обслуживающих аппаратов:

С взаимопомощью – пропускная способность аппаратов непостоянна и зависит от занятости других аппаратов: бригадное обслуживание нескольких постов СТО; использование «скользящих» рабочих;

Без взаимопомощи – пропускная способность аппарата не зависит от работы других аппаратов СМО.

Применительно к технической эксплуатации автомобилей находят распространение замкнутые и открытые, одно- и многоканальные СМО, с однотипными или специализированными обслуживающими аппаратами, с одно- или многофазовым обслуживанием, без потерь или с ограничением на длину очереди или на время нахождения в ней.

В качестве показателей эффективности работы СМО используют приведенные ниже параметры.

Интенссивность обслуживания

где ω - параметр потока требований.

показывает количество требований, поступающих в единицу времени, т.е.

A g , (5.13)

где g - .

Относителъная пропускная способность определяет долю обслуженных требований от общего их количества.

Вероятность того, что все посты свободны Р 0 , характеризует такое состояние системы, при котором все объекты исправны и не требуют проведения технических воздействий, т.е. требования отсутствуют.

Вероятность отказа в обслуживании Р отк имеет смысл для СМО с потерями и с ограничением по длине очереди или времени нахождения в ней. Она показывает долю «потерянных» для системы требований.

Р оч определяет такое состояние системы, при котором все обслуживающие аппараты заняты, и следующее требование «встает» в очередь с числом ожидающих требований r.

Зависимости для определения названных параметров функционирования СМО определяются ее структурой.

где n зан - .

Время связи требования с системой:

СМО с потерями

t сист =gt д; (5.16)

СМО без потерь

t сист =t д +t ож. (5.17)
И =С 1 r +С 2 n сн +(С 1 +C 2)ρ, (5.18)

где С 1 - стоимость простоя автомобиля в очереди;

r - средняя длина очереди;

С 2 -стоимость простоя обслуживающего канала;

n сн - количество простаивающих (свободных) каналов;

t ож - среднее время нахождения в очереди.

Из-за случайности входящего потока требований и продолжительности их выполнения всегда имеется какое-то среднее число простаивающих автомобилей. Поэтому требуется так распределить число обслуживающих аппаратов (постов, рабочих мест, исполнителей) по различным подсистемам, чтобы И= min. Этот класс задач имеет дело с дискретным изменением параметров, так как число аппаратов может изменяться только дискретным образом. Поэтому при анализе системы обеспечения работоспособности автомобилей используются методы исследования операций, теории массового обслуживания, линейного, нелинейного и динамического программирования и имитационного моделирования.

Пример. Станция технического обслуживания имеет один пост диагностирования (п= 1). Длина очереди ограничена двумя автомобилями (т= 2). Определить параметры эффективности работы диагностического поста, если интенсивность потока требований на диагностирование в среднем А =2 треб./ч, продолжительность диагностирования t д = 0,4 ч.

Интенсивность диагностирования μ=1/0,4=2,5.

Приведенная плотность потока ρ=2/2,5=0,8.

Вероятность того, что пост свободен,

P 0 =(1-ρ)/(1-ρ m +2)=(1-0,8)/(1-0,8 4)=0,339.

Вероятность образования очереди

P оч =ρ 2 Р 0 =0,8 2 0,339=0,217.

Вероятность отказа в обслуживании

P отк =ρ m +1 (1-ρ)/(1-ρ m +2)=0,8 3 (1-0,8)/(1-0,84)=0,173.

Относительная пропускная способность

g =1-P отк =1-0,173=0,827.

Абсолютная пропускная способность

А =2 0,827=1,654 треб./ч.

Среднее количество занятых постов или вероятность загрузки поста

n зан =(ρ-ρ m +2)/(1-ρ m +2)=(0,8-0,8 4)/(1-0,8 4)=0,661=1-P 0 .

Среднее количество требовниий, находящихся вочереди,

Среднее время нахождения требования в очереди

t ож =r /ω=0,564/2=0,282 ч.

Пример. На автотранспортном предприятии имеется один пост диагностирования (п= 1). В данном случае длина очереди практически неограниченна. Определить параметры эффективности работы диагностического поста, если стоимость простоя автомобилей в очереди составляет С 1 = 20 ре (расчетных единиц) в смену, а стоимость простоя постов С 2 = 15 ре Остальные исходные данные те же, что и для предыдущего примера.

Вероятность того, что пост свободен

P 0 =1-ρ=1-0,8=0,2.

Вероятность образования очереди

P оч =ρ 2 Р 0 =0,8 2 0,2=0,128.

Относительная пропускная способность g =1, так как все намеченные автомобили пройдут через диагностический пост.

Абсолютная пропускная способность А =ω=2 треб./ч.

Среднее количество занятых постов n зан =ρ=0,8.

r =ρ 2 /(1-ρ)=0,8 2 /(1-0,8)=3,2.

Среднее время ожидания в очереди

t ож =ρ 2 /(1-ρ)/μ=0,8 2 /(1-0,8)/2,5=1,6.

Издержки от функционирования системы

И =С 1 r +С 2 n сн +(С 1 +C 2)ρ=20 3,2+15 0,2+(20+15) 0,8=95,0 ре/смену.

Пример. На том же автотранспортном предприятии число постов диагностирования увеличено до двух (n =2), т.е. создана многоканальная система. Так как для создания второго поста необходимы капиталовложения (площади, оборудование и т.д.), то цена простоя средств обслуживания увеличивается до С’ 1 =22 ре. Определить параметры эффективности работы системы диагностирования. Остальные исходные данные те же, что для предыдущего примера.

Интенсивность диагностирования и приведенная плотность потока остаются теми же: μ=2,5, ρ=0,8.

Вероятность того, что оба поста свободны,

Р 0 =1:
=0,294.

Вероятность образования очереди

P оч =ρ n Р 0 /n !=0,8 2 0,294/2=0,094,

т.е. на 37 % ниже, чем в предыдущем примере.

Относительная пропускная способность g =1, так как все автомобили пройдут через диагностические посты.

Абсолютная пропускная способность А =2 треб./ч.

Среднее количество занятых постов n зан =ρ=0,8.

Среднее количество требований, находящихся в очереди,

r P оч /(n -ρ)=0,8 2 0,094/(2-0,8)=0,063.

Среднее время нахождения в очереди

t ож =P оч /(n -ρ)/μ=0,094/(2-0,8)/2,5=0,031.

Издержки от функционирования системы

И =С 1 r +С 2 n сн +(С 1 +C 2)ρ=20 0,063+22 1,2+(20+22) 0,8=61,26 ре/смену,

т.е. в 1,55 раза ниже, чем при тех же условиях для одного диагностического поста, главным образом за счет сокращения очереди автомобилей на диагностику и времени ожидания автомобилей более чем в 50 раз. Следовательно, строительство второго диагностического поста в рассматриваемых условиях целесообразно. Используя формулу (5.18) из условия И 1 2 , можно оценить предельные значения цены простоя средств обслуживания при строительстве и оснащении второго диагностического поста, которая в рассмотренном примере составляет C 2 пр =39 ре.

1.1. Структура и параметры эффективности и качества функционирования СМО

Многие экономические задачи связаны с системами массового обслуживания, т.е. такими системами, в которых, с одной стороны, возникают массовые запросы (требования) на выполнение каких-либо услуг, с другой – происходит удовлетворение этих запросов. СМО включает в себя следующие элементы: источник требований, входящий поток требований, очередь, обслуживающие устройства (каналы обслуживания), выходящий поток требований. Исследованием таких систем занимается теория массового обслуживания.

Средства, обслуживающие требования, называются обслуживающими устройствами или каналами обслуживания. Например, к ним относятся заправочные устройства на АЗС, каналы телефонной связи, посадочные полосы, мастера-ремонтники, билетные кассиры, погрузочно-разгрузочные точки на базах и складах.

Методами теории массового обслуживания могут быть решены многие задачи исследования процессов, происходящих в экономике. Так, в организации торговли эти методы позволяют определить оптимальное количество торговых точек данного профиля, численность продавцов, частоту завоза товаров и другие параметры. Другим характерным примером систем массового обслуживания могут служить заправочные станции, и задачи теории массового обслуживания в данном случае сводятся к тому, чтобы установить оптимальное соотношение между числом поступающих на заправочную станцию требований на обслуживание и числом обслуживающих устройств, при котором суммарные расходы на обслуживания и убытки от простоя были бы минимальными. Теория массового обслуживания может найти применение и при расчете площади складских помещений, при этом складская площадь рассматривается как обслуживающее устройство, а прибытие транспортных средств под выгрузку – как требование. Модели теории массового обслуживания применяются также при решении ряда задач организации и нормирования труда, других социально-экономических проблем.

Каждая СМО включает в свою структуру некоторое число обслуживающих устройств, называемых каналами обслуживания (к их числу можно отнести лиц, выполняющих те или иные операции, - кассиров, операторов, менеджеров, и т.п.), обслуживающих некоторый поток заявок (требований), поступающих на ее вход в случайные моменты времени. Обслуживание заявок происходит за неизвестное, обычно случайное время и зависит от множества самых разнообразных факторов. После обслуживания заявки канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времени их обслуживания приводит к неравномерности загрузки СМО - перегрузке с образованием очередей заявок или недогрузке - с простаиванием ее каналов. Случайность характера потока заявок и длительности их обслуживания порождает в СМО случайный процесс, для изучения которого необходимы построение и анализ его математической модели. Изучение функционирования СМО упрощается, если случайный процесс является марковским (процессом без последействия, или без памяти), когда работа СМО легко описывается с помощью конечных систем обыкновенных линейных дифференциальных уравнений первого порядка, а в предельном режиме (при достаточно длительном функционировании СМО) посредством конечных систем линейных алгебраических уравнений. В итоге показатели эффективности функционирования СМО выражаются через параметры СМО, потока заявок и дисциплины.

Из теории известно, чтобы случайный процесс являлся Марковским, необходимо и достаточно, чтобы все потоки событий (потоки заявок, потоки обслуживаний заявок и др.), под воздействием которых происходят переходы системы из состояния в состояние, являлись пуассоновским, т.е. обладали свойствами последствия (для любых двух непересекающихся промежутков времени число событий, наступающих за один из них, не зависит от числа событий, наступающих за другой) и ординарности (вероятность наступления за элементарным, или малый, промежуток времени более одного события пренебрежимо мала по сравнению с вероятностью наступления за этот промежуток времени одного события). Для простейшего пуассоновского потока случайная величина Т (промежуток времени между двумя соседними событиями) распределена по показательному закону, представляя собой плотность ее распределения или дифференциальную функцию распределения.

Если же в СМО характер потоков отличен от пуассоновского, то ее характеристики эффективности можно определить приближенно с помощью Марковской теории массового обслуживания, причем тем точнее, чем сложнее СМО, чем больше в ней каналов обслуживания. В большинстве случаев для обоснованных рекомендаций по практическому управлению СМО совсем не требует знаний точных ее характеристик, вполне достаточно иметь их приближенные значения.

Каждая СМО в зависимости от своих параметров обладает определенной эффективностью функционирования.

Эффективность функционирования СМО характеризуют три основные группы показателей:

1. Эффективность использования СМО – абсолютная или относительная пропускные способности, средняя продолжительность периода занятости СМО, коэффициент использования СМО, коэффициент не использования СМО;

2. Качество обслуживания заявок- среднее время (среднее число заявок, закон распределения) ожидания заявки в очереди или пребывания заявки в СМО; вероятность того, что поступившая заявка немедленно примется к исполнению;

3. Эффективность функционирования пары CМО потребитель, причем под потребителем понимается как совокупность заявок или их некоторый источник (например, средний доход, приносимый СМО за единицу времени эксплуатации, и др).

1.2 Классификация СМО и их основные элементы

СМО классифицируются на разные группы в зависимости от состава и от времени пребывания в очереди до начала обслуживания, и от дисциплины обслуживания требований.

По составу СМО бывают одноканальные (с одним обслуживающим устройством) и многоканальные (с большим числом обслуживающих устройств). Многоканальные системы могут состоять из обслуживающих устройств как одинаковой, так и разной производительности.

По времени пребывания требований в очереди до начала обслуживания системы делятся на три группы:

1) с неограниченным временем ожидания (с ожиданием),

2) с отказами;

3) смешанного типа.

В СМО с неограниченным временем ожидания очередное требование, застав все устройства занятыми, становится в очередь и ожидает обслуживания до тех пор, пока одно из устройств не освободится.

В системах с отказами поступившее требование, застав все устройства занятыми, покидает систему. Классическим примером системы с отказами может служить работа автоматической телефонной станции.

В системах смешанного типа поступившее требование, застав все (устройства занятыми, становятся в очередь и ожидают обслуживания в течение ограниченного времени. Не дождавшись обслуживания в установленное время, требование покидает систему.

Кратко рассмотрим особенности функционирования некоторых из этих ситем.

1. СМО с ожиданием характеризуется тем, что в системе из n (n>=1) любая заявка, поступившая в СМО в момент, когда все каналы заняты, становится в очередь и ожидает своего обслуживания, причем любая пришедшая заявка обслужена. Такая система может находится в одном из бесконечного множества состояний: s n +к (r=1.2…) –все каналы заняты и в очереди находится r заявок.

2. СМО с ожиданием и ограничением на длину очереди отличается от вышеприведенной тем, что эта система может находиться в одном из n+m+1 состояний. В состояниях s 0 ,s 1 ,…, s n очереди не существует, так как заявок в системе или нет или нет вообще и каналы свободны (s 0), или в системе есть несколько I (I=1,n) заявок, которого обслуживает соответствующее (n+1, n+2,…n+r,…,n+m) число заявок и (1,2,…r,…,m) заявок, стоящих в очереди. Заявка, пришедшая на вход СМО в момент времени, когда в очереди стоят уже m заявок, получает отказ и покидает систему необслуженной.

Т.о, многоканальная СМО работает по сути как одноканальная, когда все n каналов работают как один с дисциплиной взаимопомощи, называемой все как один, но с более высокой интенсивностью обслуживания. Граф состояний подобной подобной системы содержит всего два состояния: s 0 (s 1)- все n каналов свободны (заняты).

Анализ различных видов СМО с взаимопомощью типа все как один показывает, что такая взаимопомощь сокращает среднее время пребывания заявки в системе, но ухудшает ряд других таких характеристик, как вероятность отказа, пропускная способность, средние число заявок в очереди и время ожидания их выполнения. Поэтому для улучшения этих показателей используется изменение дисциплины обслуживания заявок с равномерной взаимопомощью между каналами следующим образом:

· Если заявка поступает в СМО в момент времени, когда все каналы свободны, то все n каналов приступает к ее обслуживанию;

· Если в это время приходит следующая заявка, то часть каналов переключается на ее обслуживание

· Если во время обслуживания этих двух заявок поступает третья заявка, то часть каналов переключается на обслуживание этой третьей заявки, до тех пор, пока каждая заявка, находящаяся в СМО, не окажется под обслуживанием только одного канала. При этом заявка, поступившая в момент занятости всех каналов, в СМО с отказами и равномерной взаимопомощью между каналами, может получить отказ и вынуждена будет покинуть систему необслуженной.

Методы и модели, применяющиеся в теории массового обслуживания, можно условно разделить на аналитические и имитационные.

Аналитические методы теории массового обслуживания позволяют получить характеристики системы как некоторые функции параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффективность работы СМО. Имитационные методы основаны на моделировании процессов массового обслуживания на ЭВМ и применяются, если невозможно применение аналитических моделей.

В настоящее время теоретически наиболее разработаны и удобны в практических приложениях методы решения таких задач массового обслуживания, в которых входящий поток требований является простейшим (пуассоновским).

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона, т.е. вероятность поступления за время t ровно k требований задается формулой:

Важная характеристика СМО - время обслуживания требований в системе. Время обслуживания одного требования является, как правило, случайной величиной и, следовательно, может быть описано законом распределения. Наибольшее распространение в теории и особенно в практических приложениях получил экспоненциальный закон распределения времени обслуживания. Функция распределения для этого закона имеет вид:

Т.е. вероятность того, что время обслуживания не превосходит некоторой величины t, определяется этой формулой, где µ- параметр экспоненциального обслуживания требований в системе, т.е. величина, обратная времени обслуживания t об:

Рассмотрим аналитические модели наиболее распространенных СМО с ожиданием, т.е. таких СМО, в которых требования, поступившие в момент, когда все обслуживающие каналы заняты, ставятся в очередь и обслуживаются по мере освобождения каналов.

Общая постановка задачи состоит в следующем. Система имеет n обслуживающих каналов, каждый из которых может одновременно обслуживать только одно требование.

В систему поступает простейший (пауссоновский) поток требований c параметром . Если в момент поступления очередного требования в системе на обслуживании уже находится не меньше n требований (т.е. все каналы заняты), то это требование становится в очередь и ждет начала обслуживания.

В системах с определенной дисциплиной обслуживания поступившее требование, застав все устройства занятыми, в зависимости от своего приоритета, либо обслуживается вне очереди, либо становится в очередь.

Основными элементами СМО являются: входящий поток требований, очередь требований, обслуживающие устройства, (каналы) и выходящий поток требований.

Изучение СМО начинается с анализа входящего потока требований. Входящий поток требований представляет собой совокупность требований, которые поступают в систему и нуждаются в обслуживании. Входящий поток требований изучается с целью установления закономерностей этого потока и дальнейшего улучшения качества обслуживания.

В большинстве случаев входящий поток неуправляем и зависит от ряда случайных факторов. Число требований, поступающих в единицу времени, случайная величина. Случайной величиной является также интервал времени между соседними поступающими требованиями. Однако среднее количество требований, поступивших в единицу времени, и средний интервал времени между соседними поступающими требованиями предполагаются заданными.

Среднее число требований, поступающих в систему обслуживания за единицу времени, называется интенсивностью поступления требований и определяется следующим соотношением:

где Т - среднее значение интервала между поступлением очередных требований.

Для многих реальных процессов поток требований достаточно хорошо описывается законом распределения Пуассона. Такой поток называется простейшим.

Простейший поток обладает такими важными свойствами:

1) Свойством стационарности, которое выражает неизменность вероятностного режима потока по времени. Это значит, что число требований, поступающих в систему в равные промежутки времени, в среднем должно быть постоянным. Например, число вагонов, поступающих под погрузку в среднем в сутки должно быть одинаковым для различных периодов времени, к примеру, в начале и в конце декады.

2) Отсутствия последействия, которое обуславливает взаимную независимость поступления того или иного числа требований на обслуживание в непересекающиеся промежутки времени. Это значит, что число требований, поступающих в данный отрезок времени, не зависит от числа требований, обслуженных в предыдущем промежутке времени. Например, число автомобилей, прибывших за материалами в десятый день месяца, не зависит от числа автомобилей, обслуженных в четвертый или любой другой предыдущий день данного месяца.

3) Свойством ординарности, которое выражает практическую невозможность одновременного поступления двух или более требований (вероятность такого события неизмеримо мала по отношению к рассматриваемому промежутку времени, когда последний устремляют к нулю).

При простейшем потоке требований распределение требований, поступающих в систему подчиняются закону распределения Пуассона:

вероятность того, что в обслуживающую систему за время t поступит именно k требований:

где. - среднее число требований, поступивших на обслуживание в единицу времени.

На практике условия простейшего потока не всегда строго выполняются. Часто имеет место нестационарность процесса (в различные часы дня и различные дни месяца поток требований может меняться, он может быть интенсивнее утром или в последние дни месяца). Существует также наличие последействия, когда количество требований на отпуск товаров в конце месяца зависит от их удовлетворения в начале месяца. Наблюдается и явление неоднородности, когда несколько клиентов одновременно пребывают на склад за материалами. Однако в целом пуассоновский закон распределения с достаточно высоким приближением отражает многие процессы массового обслуживания.

Кроме того, наличие пуассоновского потока требований можно определить статистической обработкой данных о поступлении требований на обслуживание. Одним из признаков закона распределения Пуассона является равенство математического ожидания случайной величины и дисперсии этой же величины, т.е.

Одной из важнейших характеристик обслуживающих устройств, которая определяет пропускную способность всей системы, является время обслуживания.

Время обслуживания одного требования ()- случайная величина, которая может изменятся в большом диапазоне. Она зависит от стабильности работы самих обслуживающих устройств, так и от различных параметров, поступающих в систему, требований (к примеру, различной грузоподъемности транспортных средств, поступающих под погрузку или выгрузку.

Случайная величина полностью характеризуется законом распределения, который определяется на основе статистических испытаний.

На практике чаще всего принимают гипотезу о показательном законе распределения времени обслуживания.

Показательный закон распределения времени обслуживания имеет место тогда, когда плотность распределения резко убывает с возрастанием времени t. Например, когда основная масса требований обслуживается быстро, а продолжительное обслуживание встречается редко. Наличие показательного закона распределения времени обслуживания устанавливается на основе статистических наблюдений.

При показательном законе распределения времени обслуживания вероятность события, что время обслуживания продлиться не более чем t, равна:

где v - интенсивность обслуживания одного требования одним обслуживающим устройством, которая определяется из соотношения:

где - среднее время обслуживания одного требования одним обслуживающим устройством.

Следует заметить, что если закон распределения времени обслуживания показательный, то при наличии нескольких обслуживающих устройств одинаковой мощности закон распределения времени обслуживания несколькими устройствами будет также показательным:

где n - количество обслуживающих устройств.

Важным параметром СМО является коэффициент загрузки , который определяется как отношение интенсивности поступления требований к интенсивности обслуживания v.

где a - коэффициент загрузки; - интенсивность поступления требований в систему; v - интенсивность обслуживания одного требования одним обслуживающим устройством.

Из (1) и (2) получаем, что

Учитывая, что - интенсивность поступления требований в систему в единицу времени, произведение показывает количество требований, поступающих в систему обслуживания за среднее время обслуживания одного требования одним устройством.

Для СМО с ожиданием количество обслуживаемых устройств п должно быть строго больше коэффициента загрузки (требование установившегося или стационарного режима работы СМО) :

В противном случае число поступающих требований будет больше суммарной производительности всех обслуживающих устройств, и очередь будет неограниченно расти.

Для СМО с отказами и смешанного типа это условие может быть ослаблено, для эффективной работы этих типов СМО достаточно потребовать, чтобы минимальное количество обслуживаемых устройств n было не меньше коэффициента загрузки :


1.3 Процесс имитационного моделирования

Как уже было отмечено ранее, процесс последовательной разработки имитационной модели начинается с создания простой модели, которая затем постепенно усложняется в соответствии с требованиями, предъявляемыми решаемой проблемой. В процессе имитационного моделирования можно выделить следующие основные этапы:

1. Формирование проблемы: описание исследуемой проблемы и определение целей исследования.

2. Разработка модели: логико-математическое описание моделируемой системы в соответствии с формулировкой проблемы.

3. Подготовка данных: идентификация, спецификация и сбор данных.

4. Трансляция модели: перевод модели на язык, приемлемый для используемой ЭВМ.

5. Верификация: установление правильности машинных программ.

6. Валидация: оценка требуемой точности и соответствие имитационной модели реальной системе.

7. Стратегическое и тактическое планирование: определение условий проведения машинного эксперимента с имитационной моделью.

8. Экспериментирование: прогон имитационной модели на ЭВМ для получения требуемой информации.

9. Анализ результатов: изучение результатов имитационного эксперимента для подготовки выводов и рекомендаций по решению проблемы.

10. Реализация и документирование: реализация рекомендаций, полученных на основе имитации, составление документации по модели и ее использованию.

Рассмотрим основные этапы имитационного моделирования. Первой задачей имитационного исследования является точное определение проблемы и детальная формулировка целей исследования. Как правило, определение проблемы является непрерывным процессом, который обычно осуществляется в течении всего исследования. Оно пересматривается по мере более глубокого понимания исследуемой проблемы и возникновения новых ее аспектов.

Как только сформулировано начальное определение проблемы, начинается этап построения модели исследуемой системы. Модель включает статистическое и динамическое описание системы. В статистическом описании определяются элементы системы и их характеристики, а в динамическом- взаимодействие элементов системы, в результате которых происходит изменение ее состояния во времени.

Процесс формирования модели во многом является искусством. Разработчик модели должен понять структуру системы, выявить правила ее функционирования и суметь выделить в них самое существенное, исключив ненужные детали. Модель должна быть простой для понимания и в то же время достаточно сложной, чтобы реалистично отображать характерные черты реальной системы. Наиболее важными являются принимаемые разработчиком решения относительно того, верны ли принятые упрощения и допущения, какие элементы и взаимодействия между ними должны быть включены в модель. Уровень детализации модели зависит от целей ее создания. Необходимо рассматривать только те элементы, которые имеют существенное значение для решения исследуемой проблемы. Как на этапе формирования проблемы, так и на этапе моделирования необходимо тесное взаимодействие между разработчиком модели и ее пользователями. Кроме того, тесное взаимодействие на этапах формулирования проблемы и разработки модели создает у пользователя уверенность в правильности модели, поэтому помогает обеспечить успешную реализацию результатов имитационного исследования.

На этапе разработки модели определяются требования к входным данным. Некоторые из этих данных могут уже быть в распоряжении разработчика модели, в то время как для сбора других потребуется время и усилия. Обычно значение таких входных данных задаются на основе некоторых гипотез или предварительного анализа. В некоторых случаях точные значения одного (и более) входных параметров оказывают небольшое влияние на результаты прогонов модели. Чувствительность получаемых результатов к изменению входных данных может быть оценена путем проведения серии имитационных прогонов для различных значений входных параметров. Имитационная модель, следовательно, может использоваться для уменьшения затрат времени и средств на уточнение входных данных. После того как разработана модель и собраны начальные входные данные, следующей задачей является перевод модели в форму, доступную для компьютера.

На этапах верификации и валидации осуществляется оценка функционирования имитационной модели. На этапе верификации определяется, соответствует ли запрограммированная для ЭВМ модель замыслу разработчика. Это обычно осуществляется путем ручной проверки вычисления, а также может быть использован и ряд статистических методов.

Установление адекватности имитационной модели исследуемой системы осуществляется на этапе валидации. Валидация модели обычно выполняется на различных уровнях. Специальные методы валидации включают установление адекватности путем использования постоянных значений всех параметров имитационной модели или путем оценивания чувствительности выходов к изменению значений входных данных. В процессе валидации сравнение должно осуществляться на основе анализа как реальных, так и экспериментальных данных о функционировании системы.

Условия проведения машинных прогонов модели определяется на этапах стратегического и тактического планирования. Задача стратегического планирования заключается в разработке эффективного плана эксперимента, в результате которого выясняется взаимосвязь между управляемыми переменными, либо находится комбинация значений управляемых переменных, минимизация или максимизация имитационной модели. В тактическом планировании в отличии от стратегического решается вопрос о том, как в рамках плана эксперимента провести каждый имитационный прогон, чтобы получить наибольшее количество информации из выходных данных. Важное место в тактическом планировании занимают определение условий имитационных прогонов и методы снижения дисперсии среднего значения отклика модели.

Следующие этапы в процессе имитационного исследования- проведение машинного эксперимента и анализ результатов- включают прогон имитационной модели на ЭВМ и интерпретацию полученных выходных данных. Последним этапом имитационного исследования является реализация полученных решений и документирование имитационной модели и ее использование. Ни одни из имитационных проектов не должен считаться законченным до тех пор, пока их результаты не были использованы в процессе принятия решений. Успех реализации во многом зависит от того, насколько правильно разработчик модели выполнил все предыдущие этапы процессов имитационного исследования. Если разработчик и пользователь работали в тесном контакте и достигли взаимопонимания при разработке модели и ее исследовании, то результат проекта скорее всего будет успешно внедряться. Если же между ними не было тесной взаимосвязи, то, несмотря на элегантность и адекватность имитационного моделирования, сложно будет разработать эффективные рекомендации.

Вышеперечисленные этапы редко выполняются в строго заданной последовательности, начиная с определения проблемы и кончая документированием. В ходе имитационного моделирования могут быть сбои в прогонах модели, ошибочные допущения, от которых в дальнейшем приходится отказываться, переориентировки целей исследования, повторные оценки и перестройки модели. Такой процесс позволяет разработать имитационную модель, которая дает верную оценку альтернатив и облегчает процесс принятия решений.


Глава 2. Распределения и генераторы псевдослучайных чисел

Ниже будут использованы следующие обозначения:

X - случайная величина; f(х) - функция плотности вероятности X; F(х) - функция вероятности X;

а - минимальное значение;

b - максимальное значение;

μ -математическое ожидание М[Х]; σ2 -дисперсия М[(Х-μ)2];

σ -среднеквадратичное отклонение; α-параметр функции плотности вероятности;

Очередь длины k, остается в ней с вероятностью Pk и не присоединяется к очереди с вероятностью gk=1 - Pk,". именно так обычно ведут себя люди в очередях. В системах массового обслуживания, являющихся математическими моделями производственных процессов, возможная длина очереди ограничена постоянной величиной (емкость бункера, например). Очевидно, это частный случай общей постановки. Некоторые...

1. Показатели эффективности использования СМО:

Абсолютная пропускная способность СМО – среднее число заявок, которое смо-

жет обслужить СМО в единицу времени.

Относительная пропускная способность СМО – отношение среднего числа заявок,

обслуживаемых СМО в единицу времени, к среднему числу поступивших за это же

время заявок.

Средняя продолжительность периода занятости СМО.

Коэффициент использования СМО – средняя доля времени, в течение которого

СМО занята обслуживанием заявок, и т.п.

2. Показатели качества обслуживания заявок:

Среднее время ожидания заявки в очереди.

Среднее время пребывания заявки в СМО.

Вероятность отказа заявке в обслуживании без ожидания.

Вероятность того, что вновь поступившая заявка немедленно будет принята к обслуживанию.

Закон распределения времени ожидания заявки в очереди.

Закон распределения времени пребывания заявки в СМО.

Среднее число заявок, находящихся в очереди.

Среднее число заявок, находящихся в СМО, и т.п.

3. Показатели эффективности функционирования пары «СМО – клиент», где под «клиентом» понимают всю совокупность заявок или некий их источник. К числу таких показателей относится, например, средний доход, приносимый СМО в единицу времени

Классификация систем массового обслуживания

По числу каналов СМО:

одноканальные (когда имеется один канал обслуживания)

многоканальные , точнее n -канальные (когда количество каналов n ≥ 2).

По дисциплине обслуживания:

1. СМО с отказами , в которых заявка, поступившая на вход СМО в момент, когда все

каналы заняты, получает «отказ» и покидает СМО («пропадает»). Чтобы эта заявка все же

была обслужена, она должна снова поступить на вход СМО и рассматриваться при этом как заявка, поступившая впервые. Примером СМО с отказами может служить работа АТС: если набранный телефонный номер (заявка, поступившая на вход) занят, то заявка получает отказ, и, чтобы дозвониться по этому номеру, следует его набрать еще раз.

2. СМО с ожиданием (неограниченным ожиданием или очередью ). В таких системах

заявка, поступившая в момент занятости всех каналов, становится в очередь и ожидает освобождения канала, который примет ее к обслуживанию. Каждая заявка, поступившая на вход, в конце концов будет обслужена. Такие СМО часто встречаются в торговле, в сфере бытового и медицинского обслуживания, на предприятиях (например, обслуживание станков бригадой наладчиков).

3. СМО смешанного типа (с ограниченным ожиданием ). Это такие системы, в которых на пребывание заявки в очереди накладываются некоторые ограничения.



Эти ограничения могут накладываться на длину очереди , т.е. максимально возможное

число заявок, которые одновременно могут находиться в очереди. В качестве примера такой системы можно привести мастерскую по ремонту автомобилей, имеющую ограниченную по размерам стоянку для неисправных машин, ожидающих ремонта.

Ограничения ожидания могут касаться времени пребывания заявки в очереди , по исте-

чению которого она выходит из очереди и покидает систему).

В СМО с ожиданием и в СМО смешанного типа применяются различные схемы об-

служивания заявок из очереди. Обслуживание может быть упорядоченным , когда заявки из очереди обслуживаются в порядке их поступления в систему, и неупорядоченным , при котором заявки из очереди обслуживаются в случайном порядке. Иногда применяется обслуживание с приоритетом , когда некоторые заявки из очереди считаются приоритетными и поэтому обслуживаются в первую очередь.

По ограничению потока заявок:

замкнутые и открытые .

Если поток заявок ограничен и заявки, покинувшие систему, могут в нее возвращать-

ся, то СМО является замкнутой , в противном случае – открытой .

По количеству этапов обслуживания:

однофазные и многофазные

Если каналы СМО однородны, т.е. выполняют одну и ту же операцию обслужива-

ния, то такие СМО называются однофазными . Если каналы обслуживания расположены последовательно и они неоднородны, так как выполняют различные операции обслуживания (т.е. обслуживание состоит из нескольких последовательных этапов или фаз), то СМО называется многофазной . Примером работы многофазной СМО является обслуживание автомобилей на станции технического обслуживания (мойка, диагностирование и т.д.).

Рассмотренный в предыдущей лекции марковский случайный процесс с дискретными состояниями и непрерывным временем имеет место в системах массового обслуживания (СМО).

Системы массового обслуживания – это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.

Примерами систем массового обслуживания могут служить:

  • расчетно-кассовые узлы в банках, на предприятиях;
  • персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач;
  • станции технического обслуживания автомобилей; АЗС;
  • аудиторские фирмы;
  • отделы налоговых инспекций, занимающиеся приёмкой и проверкой текущей отчетности предприятий;
  • телефонные станции и т. д.

Узлы

Требования

Больница

Санитары

Пациенты

Производство

Аэропорт

Выходы на взлетно-посадочные полосы

Пункты регистрации

Пассажиры

Рассмотрим схему работы СМО (рис. 1). Система состоит из генератора заявок, диспетчера и узла обслуживания, узла учета отказов (терминатора, уничтожителя заявок). Узел обслуживания в общем случае может иметь несколько каналов обслуживания.

Рис. 1
  1. Генератор заявок – объект, порождающий заявки: улица, цех с установленными агрегатами. На вход поступает поток заявок (поток покупателей в магазин, поток сломавшихся агрегатов (машин, станков) на ремонт, поток посетителей в гардероб, поток машин на АЗС и т. д.).
  2. Диспетчер – человек или устройство, которое знает, что делать с заявкой. Узел, регулирующий и направляющий заявки к каналам обслуживания. Диспетчер:
  • принимает заявки;
  • формирует очередь, если все каналы заняты;
  • направляет их к каналам обслуживания, если есть свободные;
  • дает заявкам отказ (по различным причинам);
  • принимает информацию от узла обслуживания о свободных каналах;
  • следит за временем работы системы.
  1. Очередь – накопитель заявок. Очередь может отсутствовать.
  2. Узел обслуживания состоит из конечного числа каналов обслуживания. Каждый канал имеет 3 состояния: свободен, занят, не работает. Если все каналы заняты, то можно придумать стратегию, кому передавать заявку.
  3. Отказ от обслуживания наступает, если все каналы заняты (некоторые в том числе могут не работать).

Кроме этих основных элементов в СМО в некоторых источниках выделяются также следующие составляющие:

терминатор – уничтожитель трансактов;

склад – накопитель ресурсов и готовой продукции;

счет бухгалтерского учета – для выполнения операций типа «проводка»;

менеджер – распорядитель ресурсов;

Классификация СМО

Первое деление (по наличию очередей):

  • СМО с отказами;
  • СМО с очередью.

В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не обслуживается.

В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.

СМО с очередями подразделяются на разные виды в зависимости от того, как организована очередь, – ограничена или не ограничена . Ограничения могут касаться как длины очереди, так и времени ожидания, «дисциплины обслуживания».

Итак, например, рассматриваются следующие СМО:

  • СМО с нетерпеливыми заявками (длина очереди и время обслуживания ограничено);
  • СМО с обслуживанием с приоритетом, т. е. некоторые заявки обслуживаются вне очереди и т. д.

Типы ограничения очереди могут быть комбинированными.

Другая классификация делит СМО по источнику заявок. Порождать заявки (требования) может сама система или некая внешняя среда, существующая независимо от системы.

Естественно, поток заявок, порожденный самой системой, будет зависеть от системы и ее состояния.

Кроме этого СМО делятся на открытые СМО и замкнутые СМО.

В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО – зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже исправно и ждет наладки.

Пример замкнутой системы: выдача кассиром зарплаты на предприятии.

По количеству каналов СМО делятся на:

  • одноканальные;
  • многоканальные.

Характеристики системы массового обслуживания

Основными характеристиками системы массового обслуживания любого вида являются:

  • входной поток поступающих требований или заявок на обслуживание;
  • дисциплина очереди;
  • механизм обслуживания.

Входной поток требований

Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание, и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием «вероятностное распределение моментов поступления требований». Здесь могут поступать как единичные, так и групповые требования (количество таких требований в каждом очередном поступлении ). В последнем случае обычно речь идет о системе обслуживания с параллельно-групповым обслуживанием.

А i – время поступления между требованиями – независимые одинаково распределенные случайные величины;

E(A) – среднее (МО) время поступления;

λ=1/E(A) – интенсивность поступления требований;

Характеристики входного потока:

  1. Вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание.
  2. Количество требований в каждом очередном поступлении для групповых потоков.

Дисциплина очереди

Очередь – совокупность требований, ожидающих обслуживания.

Очередь имеет имя.

Дисциплина очереди определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:

  • первым пришел – первый обслуживаешься;

first in first out (FIFO)

самый распространенный тип очереди.

Какая структура данных подойдет для описания такой очереди? Массив плох (ограничен). Можно использовать структуру типа СПИСОК.

Список имеет начало и конец. Список состоит из записей. Запись – это ячейка списка. Заявка поступает в конец списка, а выбирается на обслуживание из начала списка. Запись состоит из характеристики заявки и ссылки (указатель, за кем стоит). Кроме этого, если очередь с ограничением на время ожидания, то еще должно быть указано предельное время ожидания.

Вы как программисты должны уметь делать списки двусторонние, односторонние.

Действия со списком:

  • вставить в хвост;
  • взять из начала;
  • удалить из списка по истечении времени ожидания.
  • пришел последним - обслуживаешься первым LIFO (обойма для патронов, тупик на железнодорожной станции, зашел в набитый вагон).

Структура, известная как СТЕК. Может быть описан структурой массив или список;

  • случайный отбор заявок;
  • отбор заявок по критерию приоритетности.

Каждая заявка характеризуется помимо прочего уровнем приоритета и при поступлении помещается не в хвост очереди, а в конец своей приоритетной группы. Диспетчер осуществляет сортировку по приоритету.

Характеристики очереди

  • ограничение времени ожидания момента наступления обслуживания (имеет место очередь с ограниченным временем ожидания обслуживания, что ассоциируется с понятием «допустимая длина очереди»);
  • длина очереди.

Механизм обслуживания

Механизм обслуживания определяется характеристиками самой процедуры обслуживания и структурой обслуживающей системы. К характеристикам процедуры обслуживания относятся:

  • количество каналов обслуживания (N );
  • продолжительность процедуры обслуживания (вероятностное распределение времени обслуживания требований);
  • количество требований, удовлетворяемых в результате выполнения каждой такой процедуры (для групповых заявок);
  • вероятность выхода из строя обслуживающего канала;
  • структура обслуживающей системы.

Для аналитического описания характеристик процедуры обслуживания оперируют понятием «вероятностное распределение времени обслуживания требований».

S i – время обслуживания i -го требования;

E(S) – среднее время обслуживания;

μ=1/E(S) – скорость обслуживания требований.

Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента и от состояния и возможностей обслуживающей системы. В ряде случаев приходится также учитывать вероятность выхода из строя обслуживающего канала по истечении некоторого ограниченного интервала времени. Эту характеристику можно моделировать как поток отказов, поступающий в СМО и имеющий приоритет перед всеми другими заявками.

Коэффициент использования СМО

N ·μ – скорость обслуживания в системе, когда заняты все устройства обслуживания.

ρ=λ/(N μ) – называется коэффициентом использования СМО , показывает, насколько задействованы ресурсы системы.

Структура обслуживающей системы

Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т. п.). Прежде всего следует подчеркнуть, что система обслуживания может иметь не один канал обслуживания, а несколько; система такого рода способна обслуживать одновременно несколько требований. В этом случае все каналы обслуживания предлагают одни и те же услуги, и, следовательно, можно утверждать, что имеет место параллельное обслуживани .

Пример. Кассы в магазине.

Система обслуживания может состоять из нескольких разнотипных каналов обслуживания, через которые должно пройти каждое обслуживаемое требование, т. е. в обслуживающей системе процедуры обслуживания требований реализуются последовательно . Механизм обслуживания определяет характеристики выходящего (обслуженного) потока требований.

Пример. Медицинская комиссия.

Комбинированное обслуживание – обслуживание вкладов в сберкассе: сначала контролер, потом кассир. Как правило, 2 контролера на одного кассира.

Итак, функциональные возможности любой системы массового обслуживания определяются следующими основными факторами :

  • вероятностным распределением моментов поступлений заявок на обслуживание (единичных или групповых);
  • мощностью источника требований;
  • вероятностным распределением времени продолжительности обслуживания;
  • конфигурацией обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);
  • количеством и производительностью обслуживающих каналов;
  • дисциплиной очереди.

Основные критерии эффективности функционирования СМО

В качестве основных критериев эффективности функционирования систем массового обслуживания в зависимости от характера решаемой задачи могут выступать:

  • вероятность немедленного обслуживания поступившей заявки (Р обсл =К обс /К пост);
  • вероятность отказа в обслуживании поступившей заявки (P отк =К отк /К пост);

Очевидно, что Р обсл + P отк =1.

Потоки, задержки, обслуживание. Формула Поллачека–Хинчина

Задержка – один из критериев обслуживания СМО, время проведенное заявкой в ожидании обслуживания.

D i – задержка в очереди требования i ;

W i =D i +S i – время нахождения в системе требования i .

(с вероятностью 1) – установившаяся средняя задержка требования в очереди;

(с вероятностью 1) – установившееся среднее время нахождения требования в СМО (waiting).

Q(t) – число требований в очереди в момент времени t;

L(t) число требований в системе в момент времени t (Q(t) плюс число требований, которые находятся на обслуживании в момент времени t.

Тогда показатели (если существуют)

(с вероятностью 1) – установившееся среднее по времени число требований в очереди;

(с вероятностью 1) – установившееся среднее по времени число требований в системе.

Заметим, что ρ<1 – обязательное условие существования d, w, Q и L в системе массового обслуживания.

Если вспомнить, что ρ= λ/(N μ), то видно, что если интенсивность поступления заявок больше, чем N μ, то ρ>1 и естественно, что система не сможет справиться с таким потоком заявок, а следовательно, нельзя говорить о величинах d, w, Q и L.

К наиболее общим и нужным результатам для систем массового обслуживания относятся уравнения сохранения

Следует обратить внимание, что упомянутые выше критерии оценки работы системы могут быть аналитически вычислены для систем массового обслуживания M/M/N (N >1), т. е. систем с Марковскими потоками заявок и обслуживания. Для М/G/ l при любом распределении G и для некоторых других систем. Вообще распределение времени между поступлениями, распределение времени обслуживания или обеих этих величин должно быть экспоненциальным (или разновидностью экспоненциального распределения Эрланга k-го порядка), чтобы аналитическое решение стало возможным.

Кроме этого можно также говорить о таких характеристиках, как:

  • абсолютная пропускная способность системы – А=Р обсл *λ;
  • относительная пропускная способность системы –

Еще один интересный (и наглядный) пример аналитического решения вычисление установившейся средней задержки в очереди для системы массового обслуживания M/G/ 1 по формуле:

.

В России эта формула известна как формула ПоллачекаХинчина, за рубежом эта формула связывается с именем Росса (Ross).

Таким образом, если E(S) имеет большее значение, тогда перегрузка (в данном случае измеряемая как d ) будет большей; чего и следовало ожидать. По формуле можно обнаружить и менее очевидный факт: перегрузка также увеличивается, когда изменчивость распределения времени обслуживания возрастает, даже если среднее время обслуживания остается прежним. Интуитивно это можно объяснить так: дисперсия случайной величины времени обслуживания может принять большое значение (поскольку она должна быть положительной), т. е. единственное устройство обслуживания будет занято длительное время, что приведет к увеличению очереди.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью ее функционирования. В большинстве случаев все параметры, описывающие системы массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам.

Случайный характер потока заявок (требований), а также, в общем случае, и длительности обслуживания приводит к тому, что в системе массового обслуживания происходит случайный процесс. По характеру случайного процесса , происходящего в системе массового обслуживания (СМО), различают системы марковские и немарковские . В марковских системах входящий поток требований и выходящий поток обслуженных требований (заявок) являются пуассоновскими. Пуассоновские потоки позволяют легко описать и построить математическую модель системы массового обслуживания. Данные модели имеют достаточно простые решения, поэтому большинство известных приложений теории массового обслуживания используют марковскую схему. В случае немарковских процессов задачи исследования систем массового обслуживания значительно усложняются и требуют применения статистического моделирования, численных методов с использованием ЭВМ.